首页> 外文OA文献 >A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines
【2h】

A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines

机译:一种基于计算效率高的卡尔曼滤波器的估算器,用于更新适用于柴油机NOx估算的查找表

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

No-x estimation in diesel engines is an up-to-date problem but still some issues need to be solved. Raw sensor signals are not fast enough for real-time use while control-oriented models suffer from drift and aging. A control-oriented gray box model based on engine maps and calibrated off-line is used as benchmark model for No-x estimation. Calibration effort is important and engine data-dependent. This motivates the use of adaptive look-up tables. In addition to, look-up tables are often used in automotive control systems and there is a need for systematic methods that can estimate or update them on-line. For that purpose, Kalman filter (KF) based methods are explored as having the interesting property of tracking estimation error in a covariance matrix. Nevertheless, when coping with large systems, the computational burden is high, in terms of time and memory, compromising its implementation in commercial electronic control units. However look-up table estimation has a structure, that is here exploited to develop a memory and computationally efficient approximation to the KF, named Simplified Kalman filter (SKF). Convergence and robustness is evaluated in simulation and compared to both a full KF and a minimal steady-state version, that neglects the variance information. SKF is used for the online calibration of an adaptive model for No-x estimation in dynamic engine cycles. Prediction results are compared with the ones of the benchmark model and of the other methods. Furthermore, actual online estimation of No-x is solved by means of the proposed adaptive structure. Results on dynamic tests with a diesel engine and the computational study demonstrate the feasibility and capabilities of the method for an implementation in engine control units.
机译:柴油发动机的无x估计是一个最新的问题,但仍有一些问题需要解决。原始传感器信号的速度不够快,无法实时使用,而面向控制的模型易受漂移和老化的影响。基于发动机图和离线校准的面向控制的灰箱模型被用作No-x估计的基准模型。校准工作很重要,并且取决于发动机数据。这激励了自适应查找表的使用。此外,查找表通常用在汽车控制系统中,并且需要可以在线估计或更新它们的系统方法。为此,人们探索了基于卡尔曼滤波器(KF)的方法,该方法具有在协方差矩阵中跟踪估计误差的有趣特性。然而,当应付大型系统时,在时间和存储方面的计算负担很大,从而损害了其在商用电子控制单元中的实现。但是,查询表估计具有一种结构,在这里它被用来开发内存和对KF的计算有效近似,称为简化卡尔曼滤波器(SKF)。在仿真中评估了收敛性和鲁棒性,并将其与完整的KF和最小的稳态版本进行了比较,后者忽略了方差信息。 SKF用于动态发动机循环中No-x估计的自适应模型的在线校准。将预测结果与基准模型和其他方法的结果进行比较。此外,通过提出的自适应结构解决了实际的在线No-x估计问题。柴油机动态测试的结果和计算研究证明了该方法在发动机控制单元中实施的可行性和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号